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Nonlinear electron motion in a coherent whistler wave packet
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Map equations are derived, with which nonlinear electron motion in a coherent whistler wave packet
is investigated. All solutions of these equations belong to a certain strange attractor and describe
chaotic motion with the stable means. The class of solutions determined the intermittent dynamics
as the control parameter of the wave-particle system increases above the appropriate critical value
is found. An application of the results to the problem of the stability of Earth’s radiation belts is
considered. It is shown that the efficient acceleration processes take place for relativistic electrons
of a few MeV. © 2008 American Institute of Physics. [DOL: 10.1063/1.2959121]

I. INTRODUCTION

The goal of the present work is to describe high-energy
electron motion in a coherent packet of whistler modes. Sto-
chastic dynamics of charged particles in the field of a wave
packet is one of the fundamental problems in the theory of
plasma physics.1 Chaotic dynamics of relativistic particles in
the spectrum of waves is of particular interest. Chernikov
et al.” have looked at dynamics chaos as a fundamental prop-
erty of the wave-particle system, describing chaos in the rela-
tivistic generalization of the standard map, based on the
problem of particle acceleration in the electrostatic field of a
time-like wave packet. Klimov and Tel’nikhin® and Krotov
and Tel’nikhin* have shown that stochastic heating of rela-
tivistic particles by Langmuir waves in space plasmas can be
regarded as a possible mechanism for the formation of the
energy spectrum of cosmic rays. They have also studied the
evolution of the distribution function caused by the stochas-
ticity. Nagornykh and Tel’nikhin’ have developed the relativ-
istic theory for the stochastic motion of electrons in the pres-
ence of obliquely propagating electrostatic waves. For that
case, the ambient magnetic field plays an important role in
randomizing the phase of the particles with respect to the
wave phase. The conditions under which a magnetized ion
can be accelerated through a nonlinear interaction with a pair
of beating electrostatic waves have been explored by Benisti
et al.,6 who also have shown that nonlinear ion acceleration
in that physical situation is always a stochastic process. On
the other hand, stochastic particle heating by a spectrum of
electromagnetic waves propagating transversely to the mag-
netic field has been extensively studied.’

Stochastic motion of relativistic electrons in the whistler
wave packet with application of the results to electron heat-
ing in the Jovial magnetosphere was studied in Ref. 8.

This paper investigates electron motion in a wave packet
as a function of the magnitude of the wave field. We develop
the theory proposed by Khazanov et al. in Ref. 9 to describe
the electron motion in a relatively strong wave field, employ-
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ing a Hamiltonian formalism in which desired solutions are
the result of an appropriate canonical transformation on cor-
responding manifolds. As shall be shown, several different
local coordinates systems are found that describe comple-
mentary aspects of the phase dynamics.

The paper is organized as follows. In Sec. II, the canoni-
cal equation of motion in terms of the action-angle variables
is derived. In Sec. III, the dynamics are represented as a
successive action of the one-parameter group of transforma-
tion acting on a strange attractor (SA), the canonical status of
the variables on SA is demonstrated, and the dynamical and
structural invariants such as the Kolmogorov entropy and
fractal measure are calculated, showing that the topological
equivalence criterion defines well the extreme value of the
energy spectrum. In Sec. IV, a class of solutions describing
the so-called intermittent dynamics is described, and the so-
Iution shows that the sudden appearance of regular orbits is
conditioned by bifurcation of the vector field as the control
parameter increases above the appropriate critical value.
Also, due to nonadiabatic behavior of the orbits near the
boundaries of the SA, the regular motion is accompanied by
orbital drift in phase space. Section V summarizes the
results.

Il. BASIC EQUATIONS

Let us consider a relativistic particle of charge |e| and
mass m in the wave packet of extraordinary electromagnetic
waves propagating along an external uniform magnetic field
of strength B. The Hamiltonian corresponding to the problem
is

—_—

H(r,p;0)=\m’+(p+A)’ (1)

and the canonical equations of motion are

p=[p.H], t=[rH], (2)

where p is the particle momentum, r is the position vector,
and A=A"+A"is the vector potential, with the superscripts
w and ext denoting the wave and external fields, respec-
tively; and [,] stands for the Poisson brackets. We have em-
ployed here and throughout the units in which the speed of
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light c=1 and charge |e|=1. We denote by R the set of all
real numbers. Then, p € R3, r e R®, and the smooth manifold
M =R® will be a canonical space of this dynamic system, and
RS=R3>X R? is a direct product space.

In order to write down equations of the particle motion,
one must specify a coordinate system. We have chosen a
Cartesian spatial coordinates system whose z axis is directed
along the external magnetic field. Making use of the Max-
well relations

B=rotA, E=-0A/ot, (3)
we have in the coordinate representation

r=(xy,z), B™=(0,0,B), (4)

AV = (E Ay sin @, EAk cos go,O),
k k

(5)

¢ =zk—twy,

A®'= (- By,Bx,0)/2. (6)

Here the expression for A®*' is written in the axial gauge, A,
is the amplitude of mode in the wave packet, k is the wave
number, and wy is the dispersion equation.

The dispersion relation for the electron branch of the
whistler mode waves in the cold magnetoplasma is written as

Klo®=1+ wf,/[w(wB -w)], (7)

which in the long-wavelength approximation (wa/wi)<l
reduces to

vgh = w(wp - w)/w’, vﬁh <1, (8)

where wg and w), are the gyrofrequency and electron plasma
frequency, respectively. On account of axial symmetry of the
nonperturbative problem, we introduce the new variables, an
action (), and an angle (6), by a canonical transformation

(x.pyiy,py)—(6,1),

x=rcos 6, p,=-(mrwg/2)sinb,

)
y=rsin 6, p,=(mrog/2)cos 6,
r=\2mwgllmwg, wz=B/m, (10)
where r is the gyroradius.

The Hamiltonian (1) in this representation becomes
H(z,p.;0,1;t) = Hy(p,I) + V’meBIHal

- DAy cos(zk + O—twy), (11)

k
—

Hy(p,D) = \m? + p*> + 2mapl. (12)

Here, we have assumed that the ratio u=A/m(<1) is the
small parameter of the problem, and retain in Eq. (11) only
the leading terms.

Associated with Eq. (11), the equations of motion are

p=[p.H] = \2maglHy' - >, kA sin gy, (13)
k
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[=[1L,H] = \2mwglHy" - >, Ay sin i, (14)
k
:=[z,H]=pH,", 60=[6,H]=wzmH,". (15)

In Eq. (15), we omit the terms of the order of u? and intro-
duce the definition for the phase

def
Y=zk+ 60— wt. (16)

We will discuss a relativistic electron motion, therefore the
expression for the wave field in Eq. (11) can be given in the
so-called space-like representation,g’lo

AY(1,2) = A exp(ih) 2, AL —n),

neZ
(17)
Y=7k+0—tw.
Here, the Poisson sum formula
> explinAkz) = >, 8¢ —n) (18)

neZ neZ

has been employed. A,w, and k are the magnitude, fre-
quency, and wave number of the fundamental (characteristic)
mode, {=(z/L)(mod 1), L is the characteristic space scale,
8,=8({-n), &(-) is the Dirac delta function, and Z denotes
the set of all integers. Note that such a wave packet manifests
itself as a periodic sequence of impulses with characteristic
spatial period L=27/ Ak, where Ak/k=2m/N, (N>1), and N
is a characteristic number of modes in the wave packet.

In this approach, we write down the equations of motion
(13)—(15) in the form

P =kA\2mwglHy" sin >, 8L -n), (19)
neZ

g" I= \e‘"2mwBU-r01A sin 1,02 8¢—-n), (20)

neZ

i=pH,', 60=wpmHy, (1)
R

Hy(p,1) = \m* + p* + 2mayl, (22)

= w(p,l) =kpHy' + wogmH,' — o. (23)

In what follows, we are interested in the behavior of system
(19)—(23) under the resonance conditions

w(p,1) = kpHy' + wgmHy' — 0 =0. (24)

First, we observe that the phase flow on M* (z,p; 6,1) € M*,
given by Egs. (19)—(21), is invariable under the translation of
a phase point with respect to z (mod L), and possesses the
integral invariant of motion

p—kI=inv, (25)

reducing the phase space dimension to 2. Let the variable z
and p be the canonical pair on the reduced space of orbits,
M?:(UX S);, pe UCR, z mod L € S, where all orbits are
parametrized by the values of /, given by the relation
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2wgl=ap,  a=Qwg/w)vy,. (26)

We set the constant of integration equal to zero, because the
phase flow, along with Eq. (26) being an analytical invariant,
is invariable under the transformation H— H+const.

TM and T* denote the tangent and cotangent fiberings,
respectively. According to Egs. (19)—(21), there exist the
mappings”

™ — M: 5=—pdldp + 29/ 9z, (27)

T*M — M: 5= pdz + idp, (28)

which define the field of vectors, v, and the dual field of
1-forms with the components p, z given by Egs. (19) and
(21). The notations d/dx' and dx' are employed here for the
orthonormal coordinate basis of vectors and for the dual ba-
sis of 1-forms, such that

~ .0 " 1, i=i
dx'— =6 = o
ox' 0, i#i

where (x))=(p,z). It is clear that given fields possess the
translation symmetry, viz.,

V(D). &,p) = V(o) + 2, L+ 1,p), (29)

which permits the representation of the dynamics as an itera-
tion process. Indeed, it is well known that the section of the
field of 1-forms, do(0)=0, on a submanifold in M is equiva-
lent to the solution of Egs. (20) and (21).'¢ Thus, this equa-
tion rewritten in the explicit form is

pHy'dp — kKAN2maglHy' sin ¢ >, 8({-n)dz=0  (30)
and the equation for phase gradient along the vector field is

dyr— w(p)L(Hy/p)dL =0, (31)

which well describe the solution trajectories in the phase
space of the system.

Making use of the invariant of motion (26) and the reso-
nance condition (24), we integrate one by one, starting from
Eq. (30), resulting in equations to obtain the closed set of
nonlinear difference equations,

Upe1 =V, + &>Nb sin ¢,

Y1 = U + N(1+1/2 - v}

n+1
23y, /3 23
— [v,iT V1 + 0,5 + avy)sgn v, (mod 27),
(32)

expressed in terms of the variables v, ¢, where v,,; and v,
are, respectively, the values of the normed momentum at
times (n+1) and n, and #,,,,— ¢, is the phase shift acquired
by the particle. Then, integrating Eq. (30) gives the time step,
T(n),

tn+1 - tn = T(n)’ T(I’l) = LEn+1/|pn+1|’ (33)

which is a function of n.
We have employed here the following notations:

Nonlinear electron motion in a coherent whistler wave packet
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|3/2

v =|p/m|**sgn p/m, N=[kL]. (34)

Here N is the characteristic number of modes in the SL
packet, and in writing Eq. (32) we have used the a relation-
ship between the fields A" and B",

Alm=abl2, b=B"/B, (35)

which follows from Egs. (3).

The quantity A/m has a clear physical meaning: A/m is
the dimensionless representation of the ratio of the work of
the wave field at one wavelength to the particle rest energy.
In the relativistic limit, when the inequality £?>max{1,a?}
is valid, the ¢ equation from Eq. (32) is simplified and this
set of equations reduces to the map g”,

Upy1 =Up+ Q sin lvbn?
(36)
g Y =, + (3775/3/2Q)|14n+1|_2/3 sgn i, (mod 27),

written in the variables (,u), where
1-v N 3/5
u=molv, v,= —3La5/2N2b (37)

and the control parameter Q, involving the group velocity
dispersion effect, is given by

3 3/5 bZ 1/5
g= W( 1-v ) . (E) . Y
~ Uvh

It should be observed that the above equations are simi-
lar to those obtained by the authors in Ref. 8. However,
unlike the current approach, the manner in which the map
has been derived in Ref. 9 is the technique of 1-form on
extended phase space.

From Eq. (36) it follows that the dynamical system
(M,g") is invariable under the transformation

Y——t, u—-—u (39)

and the inversion of a point with respect to a circle
Y(mod2m) e S.

lll. STRANGE ATTRACTOR OF THE SYSTEM

The family of maps, {g",n € Z}, where g" is given by Eq.
(36) at Vn € Z to be the one-parametric group of transforma-
tions of M. To show this, it proves convenient to define the
map on one iteration, go(iy,u,)=g', where (), up) is the
initial state of this system. One considers the map of the
extended phase space in M: ZXM—M, neZ, (f,u) e M.
Then, from Eq. (36) it follows that g"*'=g!g", therefore by
induction we conclude that the transformation g”" generates
the group g"=(g')". The given group acts on M whose local
topology is determined by the eigenvalues of the Jacobi
matrix,

— &(MVHI’ lr/ln+l)
It is known that the trace of the matrix |trJ|=3 corre-
sponds to the topological modification of a phase space,12

which, in our case, well defines the upper bound of {u}. So
far as

(40)
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=2+ (mu )3, (41)
therefore
sup{u} = up, |up|= . (42)

As we discussed above, we are considering the dynamics as
a successive action of g” on M. It is important to note that
the Jacobian of Eq. (40) is equal to 1; therefore, g" has a
structure of the differentiable area-preserving map, expressed
in terms of variables u and ¢, being the canonical pair. More-
over, we will show that the map g" inherits the canonical
structure of the original Hamiltonian system. Indeed, let
(,u) be the local coordinates on M, and F and G be any
smooth functions of (¢, u), which obey the commutation rule
defined by the Poisson bracket,

dF oG 9G oF
[F.Gl=———-——. (43)
u I

In particular, the special Poisson brackets are
[u.u] =[] =0, [du]=1. (44)
We define by

h(ghu,0) = Q cos ¢, 8¢ n) + Q97207

X (|ul/ 7 B nez, (45)

the function on M. Then, due to Egs. (43) and (45) we write
down the set of dynamical equations,

i=[u,h]=0sin >, AL—n), ii=duldl,

(46)
=g,

with the variable { playing the role of a temporal coordinate.

Integrating the set (46), we obtain the map g" coincident
with Eq. (36). So, we conclude A(i,u,{) is the Hamiltonian
function on M, which is tantamount to the system, therefore
the vector field, 0(i,u,{), where

gr=[gh]= 3m5120)|ul ™" sgn u,

o(hu, &) = 119l du + ol (47)

with the components given by Eq. (46), is equivalent the
vector field given by Eq. (27).

The dynamical system (M ;g") is similar to that studied
by Khazanov et al. in Ref. 8 In this work, it was shown that
all trajectories for a broad range of control parameter Q be-
long to the strange attractor (SA). Shown in Fig. 1 is the
strange attractor of the system. This SA is characterized by
the two invariants, namely by the Kolmogorov entropy, be-
ing the kneading invariant, and the fractal measure. As far as
the fractal dimension being equal to that of the phase space,
the points curve evenly filling all obtainable phase space.
Hence, the strange attractor is the invariant set, g"SA=SA,
tightly embedded in phase space at n— .

So far as the variables (¢,u) are the canonical pair, the
distribution function (probability density) f(u;f) obeys the
Fokker—Planck—Kolmogorov (FPK) equation
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FIG. 1. The strange attractor of the system. One single trajectory of length
10° is obtained by numerical integration of g". The trajectory was started
from the point uy=1073, ¢,=10"* The parameter Q is 0.02.

af(u;1) _liD&_f

= . 48
ot 20u du (48)

Here, D is the conventional diffusion coefficient in phase
space,

D= <(”n+l - un)2>T_l s (49)

in which (u,,;—u,) is substituted from Eq. (36), <-> de-
notes the phase average, and T is the time scale of mapping
(36). The function f(u,?) is normalized by

JW fu,n)du=1. (50)

First, by means of Egs. (36) and (49), we calculate the
diffusion coefficient

D =Q%2T. (51)

With the help of the result (42) from Eq. (48) we evaluate the
characteristic time for redistribution u over the spectrum,

t,="2u}D=TQ2mQ)>. (52)

The solution of the FPK equation in the limiting case 1=t
with f(«) and its derivative Jf/du vanishing at the boundary
may be given in the form of the uniform distribution,

fw)=Q@m)™". (53)

Now we apply our results to the problem of particle accel-
eration in Earth’s radiation belts. In accordance with the pa-
per of Roth er al.,"* in which they discussed in detail the
problem of the interaction of a whistler wave with relativistic
electrons, we choose a set of standard values: Scale length of
background magnetic field L=10° cm, equatorial magnetic
field of 10 G, the electron cyclotron frequency wz=2.6
X 10* s71, ratio of wave frequency to the equatorial gyrofre-
quency is 0.5, and @,/ wg=2-3, and typical whistler ampli-
tudes are in the range (10—100) pT, but occasionally wave
amplitudes approach In T." The wave magnitudes of the
outer zone chorus are small enough, resulting in weak diffu-
sion scattering. Consequently, the electron heating should oc-
cur gradually over many drift orbits. By Eq. (8) we find the
phase velocity, v,,=0.25, and the group velocity,
Ver=2-Upp(wp—w/wp), v,,=025. First we evaluate
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FIG. 2. Space of orbits at times (a) 10°; (b) 10, respectively. Q=37/ V2.

a=2v,,05/ @, @=1.0, and N=[kL],N=2 X 10°. The param-
eter b is typically of order 107#—1072. We will set b=1
X 1073 below. In the Earth magnetosphere, electrons pass
through the wave packet repeatedly with time intervals of
T=L/v,. In our case, L= 10° cm, and v,=3X 1019 cm/s,
therefore T==0.033 s. Now by Eq. (38) we find Q=271072,
and expression (52) gives the characteristic time, ;=6 min
for establishing the energy spectrum. One evaluates the char-
acteristic value of particle energy, E. In consideration of Egs.
(34) and (37), from Eq. (42) the following relation results:

1-v N 2/5
E,. =am s sz , (54)
b 3

which well determines the upper value of the energy spec-
trum.

Substituting in this formula typical values for vy,a, N,
and b, we obtain E,=8 MeV.

We conclude that for typical values of the wave field in
the Earth’s radiation belt, significant diffusion in energy oc-
curs on time scales of the order of a few minutes for elec-
trons with energies up to 8 MeV. This result is in reasonable
agreement with the experimental data.”* "

IV. PHASE MODIFICATION AND INTERMITTENT
DYNAMICS

One studies the dynamic of electrons in an intense wave
packet. Shown in Fig. 2 are the phase diagrams, and Fig. 3
shows the evolution of the system in time. These pictures
indicate that the system demonstrates both chaotic and regu-
lar dynamics. We assume as a heuristic argument that the
motion may be described as the composition G’ g", where g"

Nonlinear electron motion in a coherent whistler wave packet
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FIG. 3. Time series of the {u,} obtained numerically from g". The parameter
Q is the same as in Fig. 2.

is the map (36), and G’ is a certain Hamiltonian flow acting
on the smooth manifold M?. This G is to be found. Presum-
ably, the action of G’ is associated with an adiabatic motion.
The original Hamiltonian of the system (45) can be rewritten
in the form

h(,u,0) = Q cos >, 8¢ —n) + Q(97%20?)

X(wm'", nez, (55)

where the sign of u must be kept fixed. First one counts up
the variation of 4 in each iteration, Ah=[(dh/d{)d{,

3 2/3
Ah= 577(3) sin i, (56)

u

n

In deriving Eq. (56), we have used Egs. (46) along with the
further result dh/d{=0h/d{+[h,h]=0h/d{, and carried out
the well-known transformation,

1 1
fx) & (x)dx=-| f'(x)é(x)dx. (57)
-1

-1

It appears to be reasonable that conditions for adiabatic mo-
tion,

Ah/h <1, (58)
are realized provided that the following relations are valid:
R0 <1, Qlu<l, (59)

and Ah/h=0 if
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sin ¢, =0. (60)

In that case, the equations of motion (46) reduce to the
closed set of ordinary differential equations, describing the
autonomous Hamiltonian flow G',

Gui=[u,h]=Qsiny, g=[y.h]=@m320)u"?3,
(61)

associated with the Hamiltonian, (i, u),
h(,u) = Q cos Y+ Q971207 (u/ )",

being the adiabatic invariant of the motion.

Thus, expressions (59) and (60) are the necessary and
sufficient conditions for the adiabatic approximation.

Now Eq. (62) describes the orbit, or rather the regular
part of a single trajectory, which springs up according to Eq.
(60) at =0.

As far as the eigenvalues of & are given by that of (¢, u)
on the strange attractor, & will takes its values from the in-
terval only,

h e {H|h; < h < hy},

neZ, (62)

hy=Q(1 +972/207).
(63)

hI:Q’

So far as the eigenvalues of & pertain to the interval, it ap-
pears from Eq. (61) that Eq. (62) along with Eq. (63) deter-
mine the family of concurrent curves, which corresponds to
the continuum of regular orbits. Thus, the dynamics is real-
ized on a certain invariant set, embedded in the phase space,
which is to be the connected sum consisting of the strange
attractor and continuum of orbits.

Each element of % is assigned to a certain proper orbit
with the probabilistic measure dj,. As a consequence, the den-
sity of states in the space of orbits may be given as

p(h) = 7, = dU(h)/dh, (64)

the 7, is the characteristic time of motion along the orbit,"!
and I'(h) is the phase area bounded by the invariant curve,
Cp,

T =P u(h)dy. (65)

Ch
Then, invoking Eq. (62), we obtained
p(h) = 7, = (677/Q)(20*97*)3 (¥ Q*) (1 + Q*/2h?).
(66)

It follows that the orbit associated with h=h corresponds to
the modal state in orbit space. The regular orbits are well-
distinguished, however, by virtue of the fact that Egs. (56)
and (66) transitions from one to another occur at random.

To describe this process, it is pertinent to introduce the
new variables—the action J and angle 9—which are imme-
diately related with the phase area through the Poincare in-
tegral invariant,

% u(h)dy = Jd?o. (67)
Ch Ch

Now we write down
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J=T(h)2m,
(68)
wy, =27/, =(Q/3m) (977207 (Q¥h* + Q*/2),

where I'(h) ad 7, are given by Egs. (65) and (66), respec-
tively. In the new variables, a Hamiltonian of the problem is
found to be

1 1+30%2n

HJ)=Jw,=—h- ———— 69
N=don=sh- e (69)

and the equations of motion are
J=[J,H]=0, d=[0.H]=w,. (70)

These equations imply that the motion on a selected level of
h is completely determined by own frequency w,,, and J is to
be the invariant of motion. In accordance with Egs. (63) and
(69), the values of J run from 7 to Jy=J(h=h,) as r— o, and
transition from one orbit to another is due to the nonadiabatic
behavior of orbits near the strange attractor. To study the drift
in the orbit’s space, we first define AJ=(8J/SH)AH
=AH/ w,,, which is the change in J on each time step. Since
H is a function of A, the expression (AJ/J)?>=(Ah/h)?* deter-
mines the relative rate of filling the phase space. Again, be-
cause of Eq. (58) we consider the relation

e=(AJI))A(<1) (71)

as the small parameter of the problem. The same holds for
the ratio 7,/ 7;, ;= 7,e”!, where 7, is the characteristic time
of diffusion in J. As a result, we can put into operation the
phase average as

()= 1/277J7T do. (72)

Now the evolution into the orbit’s space may be described as
a diffusion process by a probability density, p(,J,1), which
obeys the Liouville equations

ap

~ +lp.H]=0. (73)

By virtue of Eq. (71), we seek the solution to Eq. (73) using
one of the methods of perturbation theory.11 The following
one will be employed in this paper. In view of Eq. (71), p
allows for the following representation:

ap . dp AJ dp
2, J,0) =p(3,J,t:J = O+ —7+0—7,+——
p( )= p( const) o oS T . PYAL
1{AT\*&
+—(—) Po (74)
2 Th (7.]

Subject to Egs. (71) and (74), and keeping with Eq. (60), we
write down Eq. (73) in the first approximation as

LI (75)

The next approximation gives the FPK equation governing
an irreversible process in the space, namely
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ap(J,0) 1 & AJ)?
oD _LpinZe, py= 80 (76)
ot 2 oJ un

where p(J,1)=(p(93,J,1)), and D(J) is the coefficient of dif-
fusion in J. In deriving Eq. (76), we take into account (AJ)
=0. From Eq. (76) it follows that the uniform distribution
over J,J e {m,J,} is established in the time td=2J%/D(J). In
case hy/ Q*> 1, but Q= Q,, this formula yields

7, = 167%/30. (77)

The value of Q. will be estimated later. In fact, as we shall
see, Q. corresponds to the value of Q at which the vector
field of the system is modified. According to Egs. (68) and
(69), this system demonstrates nonlinear dynamics with fre-
quencies w=J"%3. So far these frequencies are incommen-
surable, therefore the set of orbits is dense almost every-
where, and by virtue of Eq. (66) the system is ergodic, and
the entropy gain is given by AS=InT'(h)."*'® In our case,
AS=In(972/2Q?) near the phase transition. Now we discuss
spectral properties of the system. The solution for Eq. (75)
may be given as

p(1) = cpe@i'e™?, (78)

where w), is the proper frequency at a given value of s, and
¢, denotes the weighting coefficient. Then we carry out the
Fourier transformation, p(w)=[p(t)e”“'dt/2, to find the
power spectrum, p(w),

Ipo|* = 27TC}215((,0 —wy). (79)

Integrating Eq. (79) over the spectrum, we get

f |po|?dew = 27ci (w),). (80)

Here, h e {H}, where {H} is given by Eq. (63), w;, is the
spectrum of proper frequencies, and consequently, ¢;(w),) is
the spectral resolution. Finally, the spectral resolution cj,(w;,)
is to be found. Recalling that w, is a one-valued function of
h for calculating ¢,(w,), we apply the one-to-one correspon-
dence

cp(wy) = p(h)dhldwy,. (81)
Then from Egs. (66) and (81), the following equation results:
cp(wy) = constw,?, (82)

which describes the so-called low-frequency 1/ noise with
the divergence proportional to w™>'2. Note that in our case the
spectrum is bounded below by the marginal frequency, wy,

wo=3720. (83)

As known, the 1/w spectrum is supposed to be a generic
property of any dynamic systems demonstrating an intermit-
tent behavior."

We discussed evolution of the system in the orbit’s
space. Now we consider the problem in the u-state space. We
expect that the rate of this process is comparable to the rate
of orbital drift. We will show it directly. First, we calculate
via Eq. (56) the u changes, Au/r, in each iteration, to find
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Au/ = (Q/m)sin . (84)

By virtue of the second inequality in Eq. (59), these changes
are much smaller than characteristic values of u/ 7. Then, the
rate of diffusion in u may be calculated as before,

S

Similarly, the characteristic time for establishing the u spec-
trum is

Ty = 2M(2)/D(u)71’2 = 4u(2)/Q27'h. (86)
Here, u is the highest value of u,
uy= (1 +2(20%91))3, (87)

which evaluated at h=h,h, is given by Eq. (63). From Egs.
(86) and (87) it follows that 7,~1672/3Q for the small
value of Q. This result agrees with that given by Eq. (77). We
will estimate these quantities by setting in Eqs. (86) and (87)
Q=37/2 (this corresponds to the extreme value of k) to
obtain one by one

74=2 X 10%,  wuy=27m, (88)

which are in good agreement with the results obtained nu-
merically.

It is worth noting that the behavior of the system re-
sembles the so-called intermittency phenomenon described
in Ref. 20, and in the relativistic case in Ref. 2. However,
there exists a substantial qualitative difference between these
processes. Thus the evolution of a system demonstrating the
intermittent dynamics can be represented as a sequence of
randomly connected parts of regular oscillations. In this case,
an initially stable periodic motion loses its stability at a cer-
tain value of a control parameter, while in our case the phe-
nomenon is caused by chaotic-order transition, and the qua-
siperiodicity in the regular motion occurs due to the intrinsic
features of strange attractor.

In order to study this aspect of the problem, it is perti-
nent to introduce the new coordinates (u,1) on an appropri-
ate configuration space, using the invariant of motion (62). In
the variables, Egs. (61) reduce to the following dynamic sys-
tem:

L M _81772<Z>2/3 %<£>1/3
== M=o (7)) Tao\n)

(89)

L)+ wlu)=W. (90)

Here W is the new invariant of motion whose proper values
are given by the initial values on SA. It is known'' that the
(u,u) space may be supplied by the Riemann metrics,

VW=w(u)du, therefore that is a configuration space as re-
quired. It allows for an interpretation of the w(u) as a func-
tion describing a certain scalar field with the mean other than
zero. Thus Egs. (89) and (90) are formally identical to equa-
tions of motion of a particle having the mass equal to 1 in the
potential field w(u). So far as w(u) is a function of &, whose
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FIG. 4. Numerical solution of the map showing the appearance of an elliptic
point. The initial conditions are the same as in Fig. 1, 0=3/4. The diagram
illustrates the phase transition as the control parameter Q is increased.

proper values belong to SA, consequently the attractive prop-
erty w(u) is actually due to the SA.

Figure 4 indicates that the phase modification must be
associated with the appearance of fixed elliptic points, when
an initial saddle point of the attractor changes to a stable
elliptic point as the control parameter Q increases above the
appropriate critical value, Q.. Indeed it follows from Eq. (61)
that these points are governed by the expressions

sin ¢,=0, 377320u?? =2mw, u,=m. (91)
These equations are satisfied provided that Q takes the value
0=0., Q.=3/4. (92)

The test does predict the phase modification rather well. This
indicates that the sudden appearance of the regular orbits is
due to the bifurcation of the vector field. As the wave ampli-
tude is increased to a value slightly above a critical value Q,,
corresponding orbits circulate around the elliptic point or
cover the full range of phase angles while remaining within
the interval, u € (7, w+47Q?*/377). The latter follows from
Eq. (87) for Q<3m/v2, but Q=Q.. It avails oneself the
result (38) to evaluate the critical value of the wave field, b,.
In view of Eq. (92), we get

b.=(3/4m) (1 —v,/3)Y* - N2, (93)

and as appears from the equation, b,=3.5X 107> for Uph
=0.25, N=10. Then substituting in Eq. (54) the value b,
computed just now yields energy E,=3 MeV. Now we
make use of Eq. (77) to find the characteristic time for es-
tablishing the energy spectrum, 7,=707,, where 7, is mea-
sured in the time steps, 7. Keeping in mind that N
=2mk/Ak=2mw/Aw at v, =v,;, we get N=wT. Assuming
w=10* s7!, and one takes into account the values of N and
Upn used just now, we find T= 1072's, consequently
Td20.7 S.

Calculating the mean heating rate, we obtain E,/ 7,
=4 MeV/s, which is much larger than that in the regime
mentioned above. This mechanism may be responsible for
the prompt energization of relativistic electrons interacting
with a narrowband whistler wave pacl<et.21’22 This could also
explain a short time scale of flux enhancement of relativistic
electrons reported by Nagai and co-workers.”
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V. SUMMARY

We have derived the group of transformations on a mani-
fold, which describes electron motion in a coherent whistler
wave packet. All solution trajectories belong to the strange
attractor (SA), consequently the motion is chaotic, the means
(the observables) of which are stable, and their values, irre-
spective of an initial condition, are independent of time. Be-
cause the canonical status of the variables on SA is estab-
lished, the use of a Poisson bracket leads immediately to the
Fokker—Planck—Kolmogorov equation, which describes the
evolution of the system to a certain steady state. The rate of
the irreversible process predetermines the heating rate of
electrons, and the structural invariant on SA yields the upper
value of the energy spectrum. In an application of our results
to the Earth’s radiation belts, this implies that a stable energy
distribution in the collisionless plasma of the belts is estab-
lished on time scales of the order of a few minutes for elec-
trons with energies up to 8 MeV.

The particle motion is no longer completely random as a
control parameter of the problem exceeds a certain critical
value. In this case, the system demonstrates the intermittent
dynamics caused by bifurcation of the vector field. Now, the
motion is described by the composition of the map g" and the
Hamiltonian flow G’, which conserves a defined adiabatic
invariants. The sufficient and necessary conditions for that
region of phase space where the motion could be approxi-
mated by regular orbits have been derived. The SA ensures
the stability of a system and causes nonadiabatic behavior of
the orbits, which results in orbital drift. As a consequence of
that, an invariant set of solutions was found to be connected
to some consisting of the SA and continuum of orbits. This
feature of motion appeared as the 1/w noise in the wave
spectrum. Our results indicate that this dynamic regime can
be realized in the Earth’s radiation belt provided that the
magnitude wave field, b, is large enough (b>1073).
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